Permanent Earthing Solution
COMCO is proud to be opening Earthing Solutions have pushed the boundaries in electrical power earthing for over 15 years. Servicing a broad range of esteemed clients from the electricity distribution, transmission, generation and construction industries worldwide, we are widely respected as leaders in this important safety critical subject, and have had key roles in writing 41-24 and S34 standards.
COMCOWe are proud to have been entrusted with the earthing design for hundreds of high profile projects in the UK and beyond. Our expertise and experience has been successfully applied to power transmission and distribution infrastructure from 400kV to 11kV, railway electrification, large scale generation, renewable energy and landmark building projects. Our international standard design capability is supported by our site measurement teams who can provide a range of services from routine maintenance surveys to advanced measurements using high-end commercial and bespoke instrumentation.
Today, as one of the most respected earthing consultancies in the UK and beyond, we continue to develop, grow, challenge ideas, innovate and most importantly, service the needs of our increasing and valued client base.
COMCO – (PES) Permanent Earthing Solution
Permanenet Earthing Solution provides high performance ground enhancement, this solution would improve resistivity less than 0.12Ω.m. This solution has been developed specifically to make earthing system more effective as per IEEE Std 80-2000 section 14.5 Para (a), which deals with soil treatment to lower resistivity .
and gives various options to achieve it.This solution has been developed to provide a solid material around electrode i.e. copper rod in an augured hole OR grounding electrodes in a trench. This is an everlasting material and will not leach any chemical in to the ground; it also increases life of electrode by providing chemical inert surrounding.In Our Country the standard are not followed and resistivity reaches up to dangerous level where LIFE and electric equipment’s are at high risk. In few
cases earthing is not incorporated and the earthing standards & diagram are violated, and in few cases sodium chloride, magnesium etc is used with water to achieve the soil conductivity level, however with passage of time these material leach out. Thus whenever earthing is tested it will not be as per required level. We assure you that our Maintenance Free PERMANENT EARTHING
SOLUTION would provide required level as per IEEE standard.
Unique Features and Specifications
Physical Appearance (Powder Form) 200 – 250 mesh
Low Resistively
High Conductivity
Permanent
Maintenance Free
Maintain Earth Resistance with Time
Set Firmly, Does not Dissolve or React
Does not Pollute the Earth and Water Table
Suitable for Installation in Slurry Form
Does not Depend on Presence of Water
Perform in all Soil and Weather Conditions
No Reaction with Electrode (Sulphur Free)
::Comco Earthing Enhancement Solution
What is Earthing ?
The main reason for doing earthing in electrical network is for the safety. When all metallic parts in electrical equipments are grounded then if the insulation inside the equipments fails there are no dangerous voltages present in the equipment case. If the live wire touches the grounded case then the circuit is effectively shorted and fuse will immediately blow. When the fuse is blown then the dangerous voltages are away.
Why We Need Earthing:
To Safe Human life/ Building/Equipments:
To save human life from danger of electrical shock or death by blowing a fuse i.e. To provide an alternative path for the fault current to flow so that it will not endanger the user
To protect buildings, machinery & appliances under fault conditions.
To ensure that all exposed conductive parts do not reach a dangerous potential.
To provide safe path to dissipate lightning and short circuit currents.
To provide stable platform for operation of sensitive electronic equipments i.e. To maintain the voltage at any part of an electrical system at a known value so as to prevent over current or excessive voltage on the appliances or equipment .
To Protect from Over Voltage:
Lightning, line surges or unintentional contact with higher voltage lines can cause dangerously high voltages to the electrical distribution system. Earthing provides an alternative path around the electrical system to minimize damages in the System.
To stabilize Voltage:
There are many sources of electricity. Every transformer can be considered a separate source. If there were not a common reference point for all these voltage sources it would be extremely difficult to calculate their relationships to each other. The earth is the most omnipresent conductive surface, and so it was adopted in the very beginnings of electrical distribution systems as a nearly universal standard for all electric systems.
Types of earthing:
Plate Earthing:
Generally for plate type earthing normal Practice is to use
Cast iron plate of size 600 mm x600 mm x12 mm. OR
Galvanized iron plate of size 600 mm x600 mm x6 mm. OR
Copper plate of size 600 mm * 600 mm * 3.15 mm
Plate burred at the depth of 8 feet in the vertical position and GI strip of size 50 mmx6 mm bolted with the plate is brought up to the ground level.
These types of earth pit are generally filled with alternate layer of charcoal & salt up to 4 feet from the bottom of the pit.
Pipe Earthing:
For Pipe type earthing normal practice is to use
GI pipe [C-class] of 75 mm diameter, 10 feet long welded with 75 mm diameter GI flange having 6 numbers of holes for the connection of earth wires and inserted in ground by auger method.
These types of earth pit are generally filled with alternate layer of charcoal & salt or earth reactivation compound.
Construction of Earthing Pit
Excavation on earth for a normal earth Pit size is 1.5M X 1.5M X 3.0 M.
Use 500 mm X 500 mm X 10 mm GI Plate or Bigger Size for more Contact of Earth and reduce Earth Resistance.
Make a mixture of Wood Coal Powder Salt & Sand all in equal part
Wood Coal Powder use as good conductor of electricity, anti corrosive, rust proves for GI Plate for long life.
The purpose of coal and salt is to keep wet the soil permanently.
The salt percolates and coal absorbs water keeping the soil wet.
Care should always be taken by watering the earth pits in summer so that the pit soil will be wet.
Coal is made of carbon which is good conductor minimizing the earth resistant.
Salt use as electrolyte to form conductivity between GI Plate Coal and Earth with humidity.
Sand has used to form porosity to cycle water & humidity around the mixture.
Put GI Plate (EARTH PLATE) of size 500 mm X 500 mm X 10 mm in the mid of mixture.
Use Double GI Strip size 30 mm X 10 mm to connect GI Plate to System Earthling.
It will be better to use GI Pipe of size 2.5″ diameter with a Flange on the top of GI Pipe to cover GI Strip from EARTH PLATE to Top Flange.
Cover Top of GI pipe with a T joint to avoid jamming of pipe with dust & mud and also use water time to time through this pipe to bottom of earth plate. Maintain less than one Ohm Resistance from EARTH PIT conductor to a distance of 15 Meters around the EARTH PIT with another conductor dip on the Earth at least 500 mm deep.
Check Voltage between Earth Pit conductors to Neutral of Mains Supply 220V AC 50 Hz it should be less than 2.0 Volts.
Affecting on Earth Conductivity:
Resistance of Soil:
It is the resistance of soil to the passage of electric current. The earth resistance value (ohmic value) of an earth pit depends on soil resistivity. It is the resistance of the soil to the passage of electric current.
It varies from soil to soil. It depends on the physical composition of the soil, moisture, dissolved salts, grain size and distribution, seasonal variation, current magnitude etc. In depends on the composition of soil, Moisture content, Dissolved salts, grain size and its distribution, seasonal variation, current magnitude.
Condition of Soil:
Different soil conditions give different soil resistivity. Most of the soils are very poor conductors of electricity when they are completely dry. Soil resistivity is measured in ohm-meters or ohm-cm.
Soil plays a significant role in determining the performance of Electrode.
Soil with low resistivity is highly corrosive. If soil is dry then soil resistivity value will be very high.
If soil resistivity is high, earth resistance of electrode will also be high.
Moisture In Soil:
Moisture has a great influence on resistivity value of soil. The resistivity of a soil can be determined by the quantity of water held by the soil and resistivity of the water itself. Conduction of electricity in soil is through water.
The resistance drops quickly to a more or less steady minimum value of about 15% moisture. And further increase of moisture level in soil will have little effect on soil resistivity. In many locations water table goes down in dry weather conditions. Therefore, it is essential to pour water in and around the earth pit to maintain moisture in dry weather conditions. Moisture significantly influences soil resistivity
Salts:
Pure water is poor conductor of electricity.
Resistivity of soil depends on resistivity of water which in turn depends on the amount and nature of salts dissolved in it.
Small quantity of salts in water reduces soil resistivity by 80%. common salt is most effective in improving conductivity of soil. But it corrodes metal and hence discouraged.
Weather Condition:
Increase or decrease of moisture content determines the increase or decrease of soil resistivity.
Thus in dry whether resistivity will be very high and in monsoon months the resistivity will be low.
Composition of Soil:
Different soil composition gives different average resistivity. Based on the type of soil, the resistivity of clay soil may be in the range of 4 – 150 ohm-meter, whereas for rocky or gravel soils, the same may be well above 1000 ohm-meter.
Earth Pit :
The location also contributes to resistivity to a great extent. In a sloping landscape, or in a land with made up of soil, or areas which are hilly, rocky or sandy, water runs off and in dry weather conditions water table goes down very fast. In such situation Back fill Compound will not be able to attract moisture, as the soil around the pit would be dry. The earth pits located in such areas must be watered at frequent intervals, particularly during dry weather conditions.
Though back fill compound retains moisture under normal conditions, it gives off moisture during dry weather to the dry soil around the electrode, and in the process loses moisture over a period of time. Therefore, choose a site that is naturally not well drained.
Grain size:
Grain size, its distribution and closeness of packing are also contributory factors, since they control the manner in which the moisture is held in the soil.
Effect of seasonal variation on soil resistivity: Increase or decrease of moisture content in soil determines decrease or increase of soil resistivity. Thus in dry weather resistivity will be very high and during rainy season the resistivity will be low.
Current Magnitude:
Soil resistivity in the vicinity of ground electrode may be affected by current flowing from the electrode into the surrounding soil.
The thermal characteristics and the moisture content of the soil will determine if a current of a given magnitude and duration will cause significant drying and thus increase the effect of soil resistivity
Distance between the Electrode:
Single electrode rod or strip or plate will not achieve the desired resistance alone.
If a number of electrodes could be installed and interconnected the desired resistance could be achieved. The distance between the electrodes must be equal to the driven depth to avoid overlapping of area of influence. Each electrode, therefore, must be outside the resistance area of the other.
Obstructions:
The soil may look good on the surface but there may be obstructions below a few feet like virgin rock. In that event resistivity will be affected. Obstructions like concrete structure near about the pits will affect resistivity. If the earth pits are close by, the resistance value will be high.
::Comco Earthing Enhancement Solution
Permanent earthing solution provides high performance ground enhancement, this solution would improve resistivity less than 0.12Ω.m. This solution has been developed specifically to make earthing system more effective as per IEEE Std 80-2000 section 14.5 Para (a), which deals with soil treatment to lower resistivity and gives various options to achieve it.
This solution has been developed to provide a solid material around electrode i.e. copper rod in an augured hole OR rounding electrodes in a trench. This is an everlasting material and will not leach any chemical in to the ground; it also increases life of electrode by providing chemical inert surrounding.
Usually the standard are not followed and resistivity reaches up to dangerous level where LIFE and electric equipment’s are at high risk. In few cases earthing is not incorporated and the earthing standards & diagram are violated, and in few cases sodium chloride, magnesium etc is used with water to achieve the soil conductivity level, however with passage of time these material leach out. Thus whenever earthing is tested it will not be as per required level.
We assure you that our Maintenance Free PERMANENT EARTHING SOLUTION would provide required level as per IEEE standard.
Today, as one of the most respected earthing consultancies in the UK and beyond, we continue to develop, grow, challenge ideas, innovate and most importantly, service the needs of our increasing and valued client base.
::Comco Earthing Enhancement Solution
Earthing More ?
Electrode and Earthing Pit:
The resistance to earth of a pipe or plate electrode reduces rapidly within the first few feet from ground (mostly 2 to 3 meter) but after that soil resistivity is mostly uniform.
After about 4 meter depth, there is no appreciable change in resistance to earth of the electrode. Except a number of rods in parallel are to be preferred to a single long rod.
Salt and Charcoal:
To reduce soil resistivity, it is necessary to dissolve in the moisture particle in the Soil.
Some substance like Salt/Charcoal is highly conductive in water solution but the additive substance would reduce the resistivity of the soil, only when it is dissolved in the moisture in the soil after that additional quantity does not serve the Purpose.
5% moisture in Salt reduces earth resistivity rapidly and further increase in salt content will give a very little decrease in soil resistivity.
The salt content is expressed in percent by weight of the moisture content in the soil. Considering 1M3 of Soil, the moisture content at 10 percent will be about 144 kg. (10 percent of 1440 kg). The salt content shall be 5% of this (i.e.) 5% of 144kg, that is, about 7.2kg.
Water Purring:
Moisture content is one of the controlling factors of earth resistivity.
Above 20 % of moisture content, the resistivity is very little affected. But below 20% the resistivity increases rapidly with the decrease in moisture content.
If the moisture content is already above 20% there is no point in adding quantity of water into the earth pit, except perhaps wasting an important and scarce national resource like water.
Length and Diameter of Electrode:
Apart from considerations of mechanical strength, there is little advantage to be gained from increasing the earth electrode diameter with the object in mind of increasing surface area in contact with the soil.
The usual practice is to select a diameter of earth electrode, which will have enough strength to enable it to be driven into the particular soil conditions without bending or splitting. Large diameter electrode may be more difficult to drive than smaller diameter electrode.
The depth to which an earth electrode is driven has much more influence on its electrical resistance characteristics than has its diameter.
Maximum Earth resistance for different event:
Major power station= 0.5 Ohm.
Major Sub-stations= 1.0 Ohm
Minor Sub-station = 2 Ohm
Neutral Bushing. =2 Ohm
Service connection = 4 Ohm
Medium Voltage Network =2 Ohm
L.T.Lightening Arrestor= 4 Ohm
L.T.Pole= 5 Ohm
H.T.Pole =10 Ohm
Tower =20-30 Ohm
Warning for minimizing Earth resistance:
Remove Oxidation on joints and joints should be tightened.
Poured sufficient water in earth electrode.
Used bigger size of Earth Electrode.
Electrodes should be connected in parallel.
Earth pit of more depth & width- breadth should be made.